Regular Expressions in JavaScript for Data Validation
Regular expressions provide powerful pattern matching capabilities for data validation. I’ve spent years implementing these patterns across various applications, and I’ll share my experience with seven essential validation patterns.
Email Validation The email pattern ensures proper format while maintaining flexibility. Here’s my proven implementation:
const emailPattern = /^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$/;
function validateEmail(email) {
return emailPattern.test(email) && email.length <= 254;
}
// Usage examples
console.log(validateEmail('[email protected]')); // true
console.log(validateEmail('invalid.email@com')); // false
Phone Number Validation Phone numbers come in various formats. This pattern handles international numbers and extensions:
const phonePattern = /^(?:(?:\+|00)([1-9]\d{0,2})|0)?[1-9]\d{1,14}$/;
function validatePhone(phone) {
const cleanPhone = phone.replace(/[\s()-]/g, '');
return phonePattern.test(cleanPhone);
}
// Examples
console.log(validatePhone('+1-555-123-4567')); // true
console.log(validatePhone('(555) 123-4567')); // true
URL Validation A comprehensive URL validator should handle various protocols and domain structures:
const urlPattern = /^(?:(?:(?:https?|ftp):)?\/\/)(?:\S+(?::\S*)?@)?(?:(?!(?:10|127)(?:\.\d{1,3}){3})(?!(?:169\.254|192\.168)(?:\.\d{1,3}){2})(?!172\.(?:1[6-9]|2\d|3[0-1])(?:\.\d{1,3}){2})(?:[1-9]\d?|1\d\d|2[01]\d|22[0-3])(?:\.(?:1?\d{1,2}|2[0-4]\d|25[0-5])){2}(?:\.(?:[1-9]\d?|1\d\d|2[0-4]\d|25[0-4]))|(?:(?:[a-z0-9\u00a1-\uffff][a-z0-9\u00a1-\uffff_-]{0,62})?[a-z0-9\u00a1-\uffff]\.)+(?:[a-z\u00a1-\uffff]{2,}\.?))(?::\d{2,5})?(?:[/?#]\S*)?$/i;
function validateURL(url) {
return urlPattern.test(url);
}
Password Strength Validation A strong password validator ensures security requirements are met:
const passwordPattern = /^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[@$!%*?&])[A-Za-z\d@$!%*?&]{8,}$/;
function validatePassword(password) {
return {
isValid: passwordPattern.test(password),
length: password.length >= 8,
hasUpperCase: /[A-Z]/.test(password),
hasLowerCase: /[a-z]/.test(password),
hasNumbers: /\d/.test(password),
hasSpecialChar: /[@$!%*?&]/.test(password)
};
}
Date Format Validation Supporting multiple date formats requires flexible patterns:
const datePatterns = {
ISO: /^\d{4}-(?:0[1-9]|1[0-2])-(?:0[1-9]|[12]\d|3[01])$/,
US: /^(?:0[1-9]|1[0-2])\/(?:0[1-9]|[12]\d|3[01])\/\d{4}$/,
EU: /^(?:0[1-9]|[12]\d|3[01])\/(?:0[1-9]|1[0-2])\/\d{4}$/
};
function validateDate(date, format = 'ISO') {
if (!datePatterns[format].test(date)) return false;
const parts = date.split(/[-/]/);
const year = parseInt(format === 'ISO' ? parts[0] : parts[2]);
const month = parseInt(format === 'ISO' ? parts[1] : format === 'US' ? parts[0] : parts[1]) - 1;
const day = parseInt(format === 'ISO' ? parts[2] : format === 'US' ? parts[1] : parts[0]);
const d = new Date(year, month, day);
return d.getFullYear() === year && d.getMonth() === month && d.getDate() === day;
}
Username Validation Username rules often vary by application. Here’s a customizable implementation:
const usernamePattern = /^[a-zA-Z0-9](?:[a-zA-Z0-9_-]*[a-zA-Z0-9])?$/;
function validateUsername(username, options = {}) {
const {
minLength = 3,
maxLength = 16,
allowSpecialChars = false
} = options;
if (username.length < minLength || username.length > maxLength) return false;
return allowSpecialChars ?
/^[\w-]+$/.test(username) :
usernamePattern.test(username);
}
Postal Code Validation Different countries use various postal code formats:
const postalPatterns = {
US: /^\d{5}(?:-\d{4})?$/,
UK: /^[A-Z]{1,2}\d[A-Z\d]? ?\d[A-Z]{2}$/,
CA: /^[ABCEGHJ-NPRSTVXY]\d[A-Z] ?\d[A-Z]\d$/
};
function validatePostalCode(code, country = 'US') {
const pattern = postalPatterns[country];
return pattern ? pattern.test(code.toUpperCase()) : false;
}
I’ve created a comprehensive validation utility that combines all these patterns:
class DataValidator {
constructor() {
this.patterns = {
email: emailPattern,
phone: phonePattern,
url: urlPattern,
password: passwordPattern,
date: datePatterns,
username: usernamePattern,
postal: postalPatterns
};
}
validate(type, value, options = {}) {
switch(type) {
case 'email':
return validateEmail(value);
case 'phone':
return validatePhone(value);
case 'url':
return validateURL(value);
case 'password':
return validatePassword(value);
case 'date':
return validateDate(value, options.format);
case 'username':
return validateUsername(value, options);
case 'postal':
return validatePostalCode(value, options.country);
default:
throw new Error(`Unsupported validation type: ${type}`);
}
}
addCustomPattern(name, pattern) {
this.patterns[name] = pattern;
}
}
// Usage example
const validator = new DataValidator();
const data = {
email: '[email protected]',
phone: '+1-555-123-4567',
password: 'SecurePass123!',
date: '2023-12-31'
};
Object.entries(data).forEach(([field, value]) => {
console.log(`${field}: ${validator.validate(field, value)}`);
});
These patterns form the foundation of robust data validation. Regular expressions provide efficiency and flexibility, but remember to combine them with additional validation logic for complete security. I regularly update these patterns to accommodate new requirements and edge cases.
Testing is crucial when implementing regular expressions. I recommend creating comprehensive test suites that cover both valid and invalid inputs. This ensures your validation remains reliable across different scenarios and use cases.
Regular expressions are powerful but can become complex. I maintain clear documentation and comments to explain pattern components. This helps team members understand and maintain the validation logic effectively.
Remember that regular expressions should be part of a larger validation strategy. Combine them with server-side validation, input sanitization, and proper error handling for secure and user-friendly applications.